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ABSTRACT
Inflammatory bowel disease (IBD) is characterized by chronic intestinal inflammation that includes
Crohn´s disease (CD) and ulcerative colitis (UC). Although the etiology is still unknown, some
specific factors have been directly related to IBD, including genetic factors, abnormal intestinal
immunity, and/or gut microbiota modifications. Recent findings highlight the primary role of the
gut microbiota closely associated with a persistent inappropriate inflammatory response. This gut
environment of dysbiosis in a susceptible IBD host can increasingly worsen and lead to coloniza-
tion and infection with some opportunistic pathogens, especially Clostridium difficile. C. difficile is
an intestinal pathogen considered the main cause of antibiotic-associated diarrhea and colitis and
an important complication of IBD, which can trigger or worsen an IBD flare. Recent findings have
highlighted the loss of bacterial cooperation in the gut ecosystem, as well as the pronounced
intestinal dysbiosis, in patients suffering from IBD and concomitant C. difficile infection (CDI). The
results of intestinal microbiota studies are still limited and often difficult to compare because of
the variety of disease conditions. However, these data provide important clues regarding the main
modifications and interrelations in the complicated gut ecosystem to better understand both
diseases and to take advantage of the development of new therapeutic strategies. In this review,
we analyze in depth the gut microbiota changes associated with both forms of IBD and CDI and
their similarity with the dysbiosis that occurs in CDI. We also discuss the metabolic pathways that
favor the proliferation or decrease in several important taxa directly related to the disease.
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Introduction

Clostridium (Clostridioides) difficile is a worldwide
public health concern and is considered the major
cause of antibiotic-associated infections in healthcare
settings. It is responsible for serious outbreaks of hos-
pital-acquired infections and for several sporadic diar-
rheas in the community. The pathogen is
a sporulating, strictly anaerobic bacterium, and trans-
mission occurs mainly by the fecal-oral route.
Intestinal colonization and toxin production are
necessary to trigger the infection; therefore, the disease
is strongly related to the disruption of the gut
microbiome1.

Inflammatory bowel disease (IBD) is a chronic dis-
ease of mainly the intestinal tract that includes ulcera-
tive colitis (UC) and Crohn´s disease (CD). UC is

a diffuse, continuous, and nonspecific inflammation
of the colonic mucosa proximal to the rectum. Crohn
´s disease is a chronic granulomatous inflammation
that affects the entire digestive tract, especially the
ileocaecum and perianal regions. While the cause of
both disease forms is still unknown, some specific
factors have been directly related to IBD, including
genetic factors, abnormal intestinal immunity, and gut
microbiota modifications directly caused by diet or
infections.2

Patients suffering from IBD are particularly suscep-
tible to C. difficile infection (CDI), with an increase in
morbidity and mortality.3 Even if it is not clear if IBD
itself or disease activity is an independent risk factor
for CDI,3,4 further predisposing and specific condi-
tions have been suggested in these patients,3 including
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colectomy and ileal-anal pouch anastomosis,5 non-
steroidal anti-inflammatory drugs,6 proton pump
inhibitors, and other immunosuppressant
treatments.7 Recurrence of CDI is common in IBD,8

and in themost complicated cases, only gut ecosystem
restoration by fecal microbiota transplantation can
help to break the cycle of recurrence.9 In the last
decade, the availability of new omic technologies has
allowed the investigation of gut microbial commu-
nities to identify whether any change in the bacterial
composition is involved in CDI or an IBD flare.

This review analyses all the latest findings about
the specific role of the gut microbiota composition
in intestinal inflammation and infection. We will
also focus on the decrease in gut diversity and its
causative role in the development of CDI in
patients suffering from IBD. Finally, we will link
all these modifications in the gut with the produc-
tion of microbial metabolites and their role in the
worsening of CDI and IBD.

A brief history of concomitant CDI and IBD

The history ofC. difficile dates back to 1935 (Figure 1),
when the bacterium was isolated for the first time
from the feces of breastfed infants.10 Despite the inter-
est that the bacterium aroused in the following years,
it was not until 1978 that it was first associated with
pseudomembranous colitis and previous antibiotic
therapy.11,12 First, immunological studies of ulcerative
colitis observed the increase in anti-colon antibody
titers due not only to chronic colon alteration, but also
to unrelated gastrointestinal diseases, such as those

caused by C. difficile, Staphylococcus aureus, Forsman
antigen or Escherichia coli (E. coli) 014. These early
findings showed that some antigens, especially those
from E. coli 014, may contribute to colon autoimmu-
nity in ulcerative colitis through disruption of
tolerance.13 In 1980, two studies that were published
in the literature almost simultaneously described for
the first time the presence of C. difficile toxins in
patients with IBD during a symptomatic relapse and
suggested the association of these toxins with further
complications in chronic disease or even with an IBD
flare.14,15 In the following years, several other reports
documented the possible association between CDI
and IBD, and different studies began to investigate
more specifically the role of C. difficile and its toxins,
differentiating patients with UC and CD, although the
results were not always the same or conclusive.16–18

Some studies directly associated the bacterium with
toxic megacolon, acute relapses of IBD and/or hospi-
tal admissions.19,20 However, other further studies
began to question the role of C. difficile in both
forms of IBD, suggesting that the bacterium could
be a part of the bowel gut, without specific cytopathic
effects in the intestinal tissues of these patients, and
that it would be relevant in only specific cases with
previous antimicrobial therapies.21,22 The diversity in
C. difficile detection methods used at the time varied
greatly among the different studies, and they were not
always as sensitive as needed.23 Furthermore, clinical
evidence of the role of C. difficile in IBD patients was
scarce.24

During the 1990s, a few studies were published
reporting the presence of toxigenic C. difficile in the
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feces of IBD patients, with a prevalence that varied
strongly up to 32%, and they described an exacerba-
tion of the disease with the presence of the
bacterium.25,26 However, it was not until the 2000s
when there is an important growth in the number of
publications that focused repeatedly on the impact of
CDI in patients with IBD.27–29 This growing interest
concurred with several outbreaks of CDI in hospitals
in Europe and in the United States, and it is at this
moment when C. difficile went from being an intest-
inal pathogen associated with antibiotic therapy to
being the most important cause of nosocomial diar-
rhea in humans.30 Therefore, it seems logical that the
IBD population was also increasingly affected by this
pathogen, as reflected in the literature, with signifi-
cant morbidity andmortality.31 Other additional but
not mutually exclusive possibilities to explain the
increase in the incidence of CDI in IBD patients in
the last two decades are the evolution of the detec-
tion methods for the bacterium, the rapid diagnosis
of the infection and a change in the epidemiology,
with the emergence of new, best adapted, hyperviru-
lent, and multidrug-resistant strains.32,33

In addition to epidemiological and clinical studies
addressing the impact of CDI in IBD patients, in the
last decade, several studies have investigated the
interplay between the gut microbiota and disease.
Advances in culture-independent molecular meth-
ods have allowed the identification of these bacterial
populations present in the gut at each phase of the
disease, which is followed by the use of new promis-
ing therapies, such as fecal microbiota transplanta-
tion or diet strategies (including prebiotics and
probiotics), to successfully treat both of the diseases.

Gut microbial community imbalances in
human IBD

In IBD patients, intestinal tissue alteration by bacteria
and/or inflammation results in a favorable environ-
ment with readily available nutrient sources leading to
important perturbations in the normal composition
of gut bacteria, in their functions, and finally in their
metabolism. These alterations are potential precursors
of other concomitant infections, including not only
CDI but also other bacterial enteric pathogens, e.g.,
cytomegalovirus, enteroviruses, Mycoplasma pneu-
moniae, and upper respiratory viruses, and
Entamoeba histolytica, among others. This

perturbation finally triggers an important relapse or
exacerbation of IBD symptoms.34

The results of intestinal microbiota studies are
often difficult to compare due to different factors,
including patient´s variability or the analysis meth-
ods and techniques used. Different sequencing tech-
nologies, annotation tools, and statistical analysis
have been developed to study the microbial diversity
and changes in the gut ecosystem. Several
recent reviews on metagenomics (from sampling to
data analysis) are already available in the literature35

and they show the need for a standardization of
analysis techniques and workflows, in order to
avoid variability in the results related to the metho-
dology of the study.

Regarding patients, the variety of disease treat-
ments (such as surgical interventions, anti-
inflammatory drugs, biologics, immunosuppressant
treatments, corticosteroids, proton pump inhibitors
or antibiotics) and the demographical characteristics
of the study population (gender, age, other overlap-
ping syndromes, diet, smoking history, etc.) could
have a direct impact on the results obtained.36–39 For
example, it was reported that liver diseases could be
the primary factors associated with disease-specific
dysbiotic influences of IBD patients.36 Disease phe-
notypes (including IBD extent or activity) have also
been associated with important changes in the gut
mucosa, especially in CD,39 while other study
observed no significant changes in the gut micro-
biota of UC patients after the use of biologic treat-
ment (infliximab, adalimumab, or golimumab).36

Other described factors that influence the intestinal
bacterial structure are the sample origin (stool or
biopsy), as well as the biopsy location, which can
induce other changes.37,38 In this context, it has been
observed that the microbial imbalance due to intest-
inal inflammation is not always reflected in the
lumen or in the stool. Therefore, a complementary
analysis of tissue biopsies would be necessary to
identify disease biomarker signals.40

Despite all these interindividual, sample, or meth-
odological factors, the recovery of consistent changes
in the bacterial composition, which are repeatedly
reported in different studies investigating IBD
patients, can highlight disease-specific bacterial sig-
natures. It has also been suggested that changes in
gut bacterial communities are not only
a consequence of inflammation but also possible
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primary factors in disease.37 These changes could be
interpreted as promising biomarkers, noninvasive
diagnostic tools or new therapeutic approaches.

Ulcerative colitis

General disruption of gut homeostasis in patients
with UC is characterized by a depleted mucous
layer (loss of mucus-containing goblet cells),
a decrease in microbial alpha diversity,36,41 an
increase in bacterial penetration, and an exaggerated
Ig response, especially for IgA and IgG.37 Recently,
all these changes were observed in both inflamed and
non-inflamed intestinal sections of pediatric UC
patients, suggesting that they are not a result of
inflammation but rather precede (and probably pro-
mote) the disease.37 However, it remains unclear if
the decrease in bacterial diversity is the cause or the
result of the depleted mucus layer.37 Differences in
bacterial diversity have been found when UC groups
are compared with control individuals.36,41,42 The
global microbiota composition was shifted by the
presence of UC, with a reduced number of species
and diminished richness and evenness, with an
alteration in the community composition and
structure.41 However, these findings can also be
observed in both forms of IBD.40,41.

Specific gut microbiota signatures have been
detected in patients suffering from UC. These
changes include a decrease in the abundance of the
phylum Verrucomicrobia36 or a decrease in the
family Leuconostocaceae, the latter being known as
acetate and lactate producers38. There is not a clear
consensus proportion of the genus Bacteroides
within the phylum Bacteroidetes. While some stu-
dies in the literature reported significant reduction in
Bacteroides,42 further studies found that this group is
increased in UC patients43 and directly associated
with the degradation of acid mucin as a carbon
source in the colon, with an exaggerated inflamma-
tory response and with colitis.37 Regarding the
Clostridia class (phylum Firmicutes), we found
some differences between families and genera, espe-
cially for the Clostridiaceae, Ruminococcaceae, and
Lachnospiraceae families.36–39,44 In UC, studies have
reported a reduction in the proportions of the genus
Coprococcus and some species of genus Roseburia,
along with other genera and species belonging to the
family Lachnospiraceae.36,39 In contrast, for the

Clostridiaceae family, some species seem to be in
increased proportions in these patients,37 like
Clostridium symbiosum, while a reduction in
the abundance of other groups, such as Clostridium
colinum and Clostridium subcluster XIVab, has
also been described.36,42 Additionally, in the
order Clostridiales, a decrease in the genus
Phascolarctobacterium was linked to the presence
of colonic inflammation regardless of the UC
phenotype36,38 (Tables 1 and 2).

Crohn's disease

Most of the microbiota changes previously described
in the gut microbiota of patients with UC are also
observed in patients suffering from CD. For exam-
ple, an increase in the proportion of the
Enterobacteriaceae family is found in UC patients,
which is also present in the gut of patients suffering
from CD,43,47,68 especially regarding Escherichia and
Shigella relative proportions, which are directly
implicated in intestinal inflammation.38,39,61

In CD patients with ileal involvement, an impor-
tant reduction in the proportions of
Ruminococcaceae and Faecalibacterium has been
reported in several studies (Table 1). They are recog-
nized as acetate and butyrate producers, respectively,
and therefore they contribute to creating an envir-
onment of oxidative stress in the intestine38

(Figure 2). In this context, while some bacteria
seem to be associated with a specific disease pheno-
type, a decrease in Clostridiales is most likely present
in all forms of CD39,47,48,51,54,59,63 with only a few
exceptions.61 In contrast, there is no unanimity
regarding the increase or decrease in
Lachnospiraceae abundance in CD. While some stu-
dies reported an increase in the proportions of this
family in the intestinal mucosa of patients with
moderate activity,37 further studies reported
a decrease in their proportions38,40,52,61 or an
increase at the family level but a depletion in lower
taxonomical levels.46 These findings may indicate an
important correlation between intestinal dysbiosis
and CD phenotype39 (Tables 1 and 2).

Dysbiosis implications

At this point, we can observe that the available
studies in the literature have described more
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similarities than dissimilarities in the gut environ-
ment of IBD patients, regardless of whether they
suffer from CD or UC. Furthermore, the propor-
tions of some phylum seem to vary in function of
the compartments of the intestinal tract, notably in
ileal, colonic tissue, and rectal tissue.69

The decrease in the alpha-diversity index and the
increase or decrease in the different taxa in the gut
have important functional implications for epithelium
repair and inflammation regulation, playing
a fundamental role in the course and worsening of
the disease. The crosstalk of the bacterial groups in the
gut ecosystem is a competitive, bidirectional, and
dynamic process, which evolves in the function of
the local environment. In turn, this environment
directly depends on the available nutrients and the
bacterial metabolites, which finally promotes differ-
ential bacterial growth. In IBD individuals, a decrease
in basic biosynthesis has been observed, along with
changes in several other metabolic processes (the
biosynthesis of essential amino acids, cobalamin
synthesis, purine and pyrimidine biosynthesis, aceto-
genesis to replace biomethanation, lipid catabolism,
and phospholipidmetabolism).38–40 Under these con-
ditions, the levels of hydrogen are strongly reduced,
promoting an increase in aerobic and aerotolerant
taxa and exacerbating disease severity.40

Proteobacteria phylum in IBD patient:
enterobacteriaceae, pasteurellaceae, and
desulfovibrionaceae families

Several studies have reported an increase in the
Pasteurellaceae and/or Enterobacteriaceae families
in patients with CD.37–40,45-47,49,68 Gut inflammation
and chronic colitis have been further associated with
an important increase of Enterobacteriaceae family68

and an oxidative stress in the gut. A recent study goes
beyond and suggests Enterobacteriaceae as stool bio-
markers in IBD.45 There are several metabolic
changes that promote oxidative stress at the mucosal
surface of IBD patients and favor an increased level
or depletion of different taxa that use mucin as
a primary energy source.37,38 Specifically, the
increase in components of the benzoate metabolic
pathway (aminobenzoate and fluorobenzoate degra-
dation) seems to be directly associated with
Enterobacteriaceae growth, virulence, and stress
response.40 Bacteria such as Salmonella orTa
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enterohemorrhagic E. coli would take advantage of
these redox stresses and therefore proliferate to
a large extent. Indeed, in the ileum mucosa of CD
patients and in the fecal samples of UC patients,60

high numbers of adherent and invasive E. coli have
been found, as well as a high prevalence of antibodies
directed against E. coli outer membrane porin
C (OmpC) and flagellin. It seems that E. coli acts as
an opportunistic pathogen and is directly implicated
in the disease, with the induction of the production
of cytokines, such as tumor necrosis factor α (TNFα)
and IL8,39 and an increase in mucin degradation.

In contrast, the Desulfovibrionaceae family is
reported in reduced proportions,37 with a negative
correlation between physiological distress and its
abundance.70 The genusDesulfovibrio degrades acidic
mucin normally found in the colon. However, in CD
patients, the mucus is mostly neutral, which can
explain the reductions observed in these subjects.37

Bacteroidetes pylum in IBD patients:
prevotellaceae and bacteroidaceae families

In IBD patients, inflammation and colitis have
been also associated with an increase of
Prevotellaceae43,51 and Bacteroidaceae46 family.
Within the latter, Bacteroides genus has been sug-
gested as an IBD biopsy biomarker.45

There is an important increase in other bac-
terial-mediated processes, which in turns favor
the proliferation of members of Bacteroidetes
phylum. These processes include an increase in
the metabolism of the sulfur amino acid
cysteine, riboflavin metabolism, lipopolysacchar-
ide production, glutathione biosynthesis,
N-acetylgalactosamine phosphotransferase trans-
porters, and virulence factor production.
A decrease in proportions of Bacteroides genus
has been reported in inflamed mucosa when
compared with non-inflamed mucosa of patients
suffering IBD,49 and have been identified as
a predictor of relapse.54

Firmicutes phylum in IBD patients: clostridiaceae,
lachnospiraceae ruminococcaceae and
veillonellaceae families

The oxidative stress previously described
has also a direct impact in the phylum
Firmicutes, with an increase in some mucolytic
bacteria, especially Ruminococcus torques and
Ruminococcus gnavus.67 A previous study
showed differences in their abundance in the
dysbiotic gut of CD and CU patients.62

Furthermore, R. gnavus along with Clostridium
hathewayi and Clostridium bolteae have

Figure 2. Changes in the gut microbiota communities of IBD patients.
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increased expression during dysbiosis, suggesting
that they could have a role in the disease.62

On the other hand, a decrease in the abundance of
butyrate-producing, hydrogen-utilizing bacteria and
other taxa with anti-inflammatory activity, including
Faecalibacterium, Phascolarctobacterium
(Veillonellaceae family), and Clostridia clades IV
and XIVa, especially the genera Roseburia
(Lachnospiraceae family) and Butyricicoccus
(Clostridiaceae family) have been observed
(Table 1). Species of Roseburia are butyrate produ-
cers and acetate consumers and are associated with
anti-inflammatory regulatory T cell production,
while Phascolarctobacterium species are only succi-
nate consumers. Both of these genera have been
associated with a decrease in butyrate and propio-
nate production in both forms of IBD.36,38 In rela-
tion to the genus Faecalibacterium, a low rate of
Faecalibacterium prausnitzii have been identified as
predictors of relapse.54 IBD inflamed mucosa pre-
sents a decrease in F. prausnitzii compared to non-
inflamed mucosa.49 Furthermore, low abundance of
Faecalibacterium in postoperative ileal mucosa has
been associated with a higher risk of recurrence,64

and also associated with a massive increase of leuko-
cytes in UC.66 This bacterium can metabolize host-
derived polysaccharides (pectin, uronic acids) and
other substrates (such as N-acetyl glucosamine)
from the intestinal mucus for growth, and it is also
described as an important anti-inflammatory com-
mensal bacterium.38 The anti-inflammatory proper-
ties of F. prausnitzii have been associated with
inhibition of the NF-κB pathway via protein produc-
tion in intestinal epithelial cells, while a decrease in
proportions of Butyricicoccus pullicaecorum seems to
attenuate trinitrobenzene sulfonic acid (TNBS)-
induced colitis in rats and to increased transepithe-
lial resistance.36 This depletion of Faecalibacterium
and Butyricicoccus, but also of Ruminococcus homi-
nis, combined with alterations in bacterial products,
especially butyrate,53,57,62 provides the appropriate
conditions to allow E. coli to proliferate.39

Verrucomicrobia phylum, akkermansia
abundance, and its impact on IBD

Unlike for other mucolytic bacteria, some studies
reported a reduction in the levels of Akkermansia
muciniphila in both CD and UC patients and in

the early onset of CD.67,71 It has been proposed
that A. muciniphila could be responsible for exa-
cerbated gut inflammation in IBD patients.
However, a recent study using animal models
did not find any correlation between short-term
intestinal inflammation and the presence of the
bacterium in the gut.72 A. muciniphila use mucus
as a carbon, nitrogen, and energy source, and
therefore, as a consequence of its metabolism, it
produces short-chain fatty acids (acetate, propio-
nate, 1,2-propanediol, and succinate).73 It is
worth mentioning that short-chain fatty acids
seem to be depleted in IBD patients.74

Furthermore, as specifically described for UC
patients, the decrease in the abundance of the
genus Akkermansia and the low abundance of
A. muciniphila could affect the use of mucins as
a carbon source by other symbiotic commensal
bacteria,36 and it was proposed as a possible mar-
ker of dysbiosis.75 Reductions in Akkermansia
genus were also described in the gut microbiota
of patients with CD.56

CDI and IBD: gut microbiota relationships and
implications for disease treatment with fecal
microbiota transplantation

Only a few studies have investigated the specific
impact of CDI on the IBD microbiota. A previous
study76 directly compared the gut microbiota of
IBD patients with and without CDI disease. The
authors found that in patients with both IBD and
CDI, there was a loss of bacterial cooperation in
the gut ecosystem as well as a more pronounced
intestinal dysbiosis than in patients suffering from
only IBD. Metabolite production is also altered in
the inflamed gut, which is essential for several
metabolic processes, as energy production and
host immunity.77 Among these metabolites, buty-
rate has a fundamental role in maintaining the
balance of the intestinal microbiota, with the pre-
servation of the epithelial barrier and regulation of
the immunity.53,74 Butyric acid, along with acetic
acid and propionic acid are the end products of
indigested carbohydrates in the intestine after bac-
terial fermentation. It was demonstrated that buty-
rate enhances the intestinal barrier function by
facilitating the assembly of tight junctions.78

Butyrate producers supply energy to gut epithelial

e1725220-12 C. RODRÍGUEZ ET AL.



cells and therefore they protect against inflamma-
tion and infection.79 In the last decade, several
studies have focused on the modification of the
gut microbiota to successfully treat several intest-
inal diseases, including IBD and CDI. Among the
various taxa investigated, it seems that positive
results are obtained when the feces include the
following taxa: Clostridium clusters IV and XIVa,
which include the Ruminococcaceae and
Lachnospiraceae families, respectively, and the
genera Roseburia, Oscillibacter, Blautia, and
Dorea. This selection of microbes has important
underlying metabolic mechanisms, specially the
production of butyrate in the gut.80

Blautia and Dorea genera: role in maintenance
and recovery of gut homeostasis

In concomitant IBD and CDI diseases, there is
a specific reduction in two groups of bacteria,
Blautia and Dorea. Members of Blautia (butyrate-
producing bacterial species) are already signifi-
cantly reduced in patients with only IBD, but it
seems that the decrease in the relative proportions
in the gut is more marked when the disease is
aggravated with CDI.76 The Blautia genus (espe-
cially Blautia obeum) is selected among the bacter-
ial species enriched in the fecal microbiota of
healthy donors for fecal microbiota transplant
(FMT) and was also found after successful restora-
tion of the gut in patients with recurrent CDI.81–85

Furthermore, in vitro analysis has shown
a negative correlation between the production of
a bile metabolism enzyme (bile salt hydrolase, of
which Blautia is one of the representative produ-
cers) and C. difficile germination.86,87 It was
recently described that the bacterial strain
B. obeum A2-162 produces a lantibiotic, nisin O,
in the human gastrointestinal tract, which presents
antimicrobial activity against both Clostridium per-
fringens and C. difficile.88 Therefore, its depletion
would favor C. difficile colonization and infection
in the IBD gut.

Regarding the Dorea genus, its depletion has been
previously reported in studies investigating patients
suffering from CDI and IBD separately.40,79 Blautia
and Dorea have been described as major acetate

producers in the normal gut, but it is hypothesized
that they are replaced when CDI occurs.79 Recently,
a study proposed a cocktail of bacteria to treat recur-
rent CDI, which includes Blautia producta
(Peptostreptococcus productus), E. coli and
Clostridium bifermentans. The authors demonstrate
in their work that this bacteriotherapy could antag-
onize chronic relapse of CDI, which in turn inhibited
the growth of Bacteroides species.89

Undesirable increase of some taxa: proliferation
of other pathogens and aggravating factors of
disease

There are some taxa that seem to increase in
abundance in patients suffering from IBD and
CDI, including some species of Clostridium,
Enterococcus, and R. gnavus,76 which have also
been described to increase in patients with IBD
(Table 2). High abundances of Proteobacteria and
Enterobacteriaceae are often found in patients
with recurrent CDI82 but also in those suffering
from IBD.37–40,46 Within these two bacterial
groups, some species are classified as important
pathogens, such as Salmonella and enterohemor-
rhagic E. coli, which may take advantage of the
intestinal conditions under dysbiosis to proliferate
and worsen the disease.39 These intestinal condi-
tions include altered oxygen availability and
nitrate production. Under inflammatory condi-
tions, epithelial cells reduce their capacity to
undergo beta-oxidation, resulting in an increase
in available oxygen and a reduction in hydrogen
levels.40 Furthermore, the depletion of butyrate-
producing bacteria favors the expression of Nos2
(an important gene encoding nitrite oxidase
synthase), resulting in elevated levels of available
nitrate and proliferation of the Enterobacteriaceae
family, especially E. coli.90

After fecal microbiota transplantation for CDI
treatment, an increase in Bacteroidetes to the det-
riment of Protobacteria was found.91 The impor-
tant role of Proteobacteria in IBD and CDI
diseases is associated with its direct role as
a disruptor of intestinal homeostasis and its direct
implication in the inflammation of the intestine.
The absence of differentiated B-cells and
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deficiency in the production of specific IgA (spe-
cifically targeting Proteobacteria) is correlated with
the persistence of Proteobacteria in the inflamed
gut.92 Other taxonomical alterations related to
CDI and IBD are increased levels of
Fusobacterium and Mycobacterium taxa.93 The
Fusobacteriaceae family has also been found in
high proportions in the gut microbiota of patients
with CD and UC.40,75 Mycobacterium avium subs.
Paratuberculosis and Fusobacterium nucleatum
have been recently investigated as potential aggra-
vating factors for IBD.94

Altered intestinal barrier function and
C. difficile colonization

The impairment of intestinal barrier function or
disruption of mucosal T cells by inflammatory med-
iators favor C. difficile colonization and toxin pro-
duction. Some phospholipids, such as
phosphatidylcholine and phosphatidylethanola-
mine, are released during this disruption.
Phosphatidylcholine is converted into ethanolamine
and glycerol by bacterial phosphodiesterases.
C. difficile benefits from the breakdown of ethanola-
mine and utilizes it as a source of nitrogen and
carbon.95,96 On the other hand, a higher glycosidase
activity has been reported in IBD patients than in
healthy subjects. Indeed, disruption of intestinal bar-
rier function and the intestinal microbiota also
entails the liberation of monosaccharides, which
promote the multiplication and colonization of
C. difficile.96 A previous study described in depth
how C. difficile catabolises microbiota-liberated
mucosal carbohydrates and how pathogen expan-
sion is even aided by microbiota-induced elevation
of sialic acid levels in vivo.97

C. difficile is able to produce para-cresol (p-cre-
sol) through the fermentation of tyrosine in the gut.
A recent study demonstrated that this ability pro-
vides a competitive advantage over other gut bac-
teria, including E. coli, Klebsiella oxytoca, and
Bacteroides thetaiotaomicron.98 Further studies
have proposed that bacterial metabolites, such as
p-cresol, ammonium, and hydrogen sulfide, notably

affect intestinal barrier function and participate in
the IBD course.99

Other microbiota signatures and metabolic
pathways associated with specific conditions and
populations of CDI and IBD

In pediatric population, it has been described that
IBD patients with CDI and with a previous history of
surgery presented a reduction of Ruminococcus,
Alistipes, and Bifidobacterium.100 Even if there are
significant differences in the gut microbiota between
pediatric patients and adults due to the gut micro-
biota is not yet fully developed, throughout this
review we have observed several discrepancies
among the different studies in relation to the pre-
sence of some species of Bifidobacterium and
Ruminococcus and their role in the inflamed mucosa
(Tables 1 and 2). It has been demonstrated that some
strains of R. gnavus are able to assimilate mucin
monosaccharides, to use sialic acid and to produce
propanol and propionate.101 As previously
described, mucin users are implicated in gut
inflammation.37 But the finding that not all of
R. gnavus strains are able to grow on mucin as the
sole carbon source101 may explain the differences
about its depletion or increase in IBD and CDI
disease. Further explanations for an overexpression
of Bifidobacterium,61,68,102 Ruminococcus,49,61,67 or
even Akkermansia102 in the inflamed gut include
the important role of the modifications in the intest-
inal micro-environment, as, for example, an increase
of mucus production,102 and also microbiota mod-
ifications and interactions with aging.

Other three studies have confirmed the reduc-
tion of Alistipes in pediatric patients with
IBD,37,52,56 but also in patients with CDI.102

Alistipes has been associated with protection
against CDI and positive modulate the immune
response against experimental colitis in mouse
models.103 Furthermore, it has been proposed as
biomarker of CDI,102 and used as one of the
dominant genera in the fecal bacterial composition
of donors for fecal microbiota transplantation to
treat CDI, resulting in the successful integration of
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this bacterial group in the gut ecosystem of the
patient.104

Finally, and in relation with metabolic path-
ways, a further analysis showed a reduction in
methionine biosynthesis in IBD patients with
C. difficile after surgery.100 Alterations of sulfur
and cysteine/methionine metabolism in IBD
patients have been previously related to changes
in proportions of some bacteria with specific func-
tions involving these pathways,105 including
F. prausnitzii and Roseburia among others.100

Furthermore, it has been observed that
a commercial form of methionine (available as
dietary supplement) enhances the viability of
Saccharomyces boulardii in the gut, especially in
acidic environments. This nonpathogenic yeast is
classified as a probiotic and it has been used to
prevent CDI106 and suggested as a treatment of
IBD. Furthermore, serological antibodies Anti-
Saccharomyces have been used as a marker for
prediction of CD disease course, within other vari-
ables and patient characteristics.107

Microbiota and treatments for IBD and CDI:
situation and perspective

As already described in this review, one of the
most proposed options in recent years have been
fecal microbiota transplantation to restore the
altered gut ecosystem. We can find in the literature
several studies describing its use in CDI patients
with underlying IBD.108 In a previous study treat-
ing patients with CDI and concurrent IBD, the
effectiveness of FMT was between 79% and 88%,
after one and two interventions, respectively.109

A further study also reported the efficacy of FMT
to treat recurrent CDI in IBD, but authors found
that more than half of patients required IBD treat-
ment escalation shortly after FMT.110 Similarly, in
the study of Khoruts et al.111 results showed that
FMT was less effective in IBD patients suffering
recurrent CDI than in those without IBD, as more
than 25% of the studied IBD patients have
a disease flare following FMT, especially in those
cases with extensive colon involvement, and they
required a treatment with prednisone. Hypothesis
about the problems with FMT in these patients
include implantation of the major taxa in the gut
and deficiency in host immune defenses.111

Meighani et al.112 found a good response to FMT
in patients with CDI and IBD. In their study, three
patients who failed therapy had newly diagnosis of
IBD and one presented severe active disease.
Therefore, authors conclude that FMT is a good
alternative treatment for well-controlled IBD
patients with recurrent CDI.

Consistent with the microbiota changes
observed in IBD and CDI patients, a specific
microbiota signature for fecal microbiota donors
has been described80,113 (Table 3). The selection of
microbes has important underlying metabolic
mechanisms, such as the production of butyrate
in the gut, as largely described in the section
above.

A previous study selected a total of 37 bacteria
to treat dysbiosis during CDI, which could be
administrated orally in a noninvasive way.85 In
this contest, some problems derived from FMT
are related to the actual method of the feces deliv-
ery, which may require colonoscopy and
sedation.116 In addition, other problems could
include the degree of engraftment and immune
response to the transplanted microbiota (donor-
recipient incompatibilities), stemming from an
underlying genetic factor.80 A previous study sug-
gested only a marginal risk of worsening in FMT-
treated IBD patients, and hypothesized the role of
donors to induce remission or to induce worsen-
ing in IBD activity.117 Other described complica-
tions include the transmission of parasites from
donors to patients by FMT, but without gastroin-
testinal symptomatology.118 A recent study used
washed microbiota transplantation in mice and
concluded that the technique avoids the virus
transmission among other complications and is
safer than crude FMT.119

In addition to FMT, probiotic nutrition with
multiple strains for gastrointestinal health modu-
lation has been proposed as an effective and safe
treatment.120 One recent study proposed the strain
Bacillus licheniformis to treat colitis, which seems
to modulate the gut microbiota composition and
has been associated with a decrease in
Bacteroidetes.121 Other probiotics classically used
in different trials to reduce intestinal inflammation
are Lactobacillus rhamnosus, Lactobacillus plan-
tarum, Lactobacillus acidophilus, and Enterococcus
faecium. However, the available results on their
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Table 3. Group of bacteria modifications associated with CDI and IBD. Main characteristics and role in disease and fecal microbiota
transplant treatment.

Bacteria group
at genus level Taxonomy

Main characteristics and
role in the intestinal
metabolic activity◊

Gut ecosystem
modifications observed

Fecal microbiota transplant treatment

Expected changes after
taxa restoration

Main microbiota
communities
identified in

bacteriotherapy
studies for gut
restoration (∇)

Alistipes Bacteroidetes
Bacteroidia
Bacteroidales
Rikenellaceae

● Gram-stain negative
● Straight or slightly

curved rods
● Non-spore forming
● Non-motile
● Obligately anaerobic
● Produce succinic

acid (major glucose
metabolic end pro-
duct) and acetic acid
(minor)

● Produce indole and
digest gelatin

● Bile tolerant

Depletion in children with
both CDI and IBD100

– Stable engraftment and
restoration of the
structure of the gut
microbiota. Cessation of
CD-related changes and
resolution of other
gastrointestinal
symptoms (in
combination with genera
Bacteroides and
Parabacteroides)104

Alistipes and Blautia
(positively correlated
with colonic
melatonin receptor
expression) (AM)114

Blautia Firmicutes
Clostridia
Clostridiales
Lachnospiraceae

● Gram-stain-positive,
non-motile coccoid
or oval-shaped short
rods

● Obligate anaerobe
● Growth is stimulated

by fermentable
carbohydrates.

● End products after
fermentation include
acetate, ethanol, lac-
tate, butyrate, and
succinate

● - Some species also
produce bile salt
hydrolase
(B. obeum)

Depletion in adult patients
with both CDI and IBD76

- Increase of butyrate
production (negative
correlation with the
presence of C. difficile)81

- Restitution of microbiota
bile salt hydrolases
(restoration of gut bile
metabolism)87

Blautia Bacteroides
and Ruminococcus (in
detriment of
Enterococcus,
Escherichia, Shigella)
(CDI)81

Blautia producta,
Escherichia coli,
Clostridium
bifermentans (to
antagonize C. difficile
and restore
Bacteroides levels)
(CDI)82

Blautia and
Ruminococcaceae
(associated to
colonization
resistance) (CDI)83

Blautia hansenii
(protective against
infection) (CDI)83

Blautia, Coprococcus,
Faecalibacterium
(restoration after
FMT) (CDI)84

Blautia and Blautia
producta (Taxa used
in bacteriotherapy
studies) (CDI)85

Blautia and Alistipes
(positively correlated
with colonic
melatonin receptor
expression)114

Blautia, Dorea,
Roseburia,
Oscillobacter (CDI)115

(Continued )
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Table 3. (Continued).

Bacteria group
at genus level Taxonomy

Main characteristics and
role in the intestinal
metabolic activity◊

Gut ecosystem
modifications observed

Fecal microbiota transplant treatment

Expected changes after
taxa restoration

Main microbiota
communities
identified in

bacteriotherapy
studies for gut
restoration (∇)

Dorea Firmicutes
Clostridia
Clostridiales
Lachnospiraceae

● Gram-stain-positive
rods, non-spore
forming, non-motile.

● Obligately anaerobic
and chemo-
organotrophic.

● Major end products
of glucose metabo-
lism include ethanol,
formate, acetate, H2,
and CO2

Depletion in adult patients
with both CDI and IBD76

- Recovery of short fatty
acid production and
therefore the metabolic
activity of the microbial
community (related with
CDI remission)115

Dorea (CDI)85

Dorea, Blautia
Roseburia,
Oscillobacter (CDI)115

Clostridium Firmicutes
Clostridia
Clostridiales
Clostridiaceae

● Usually Gram-stain-
positive rods.

● Motile or non-
motile (when motile,
cells usually are
peritrichous)

● The majority of spe-
cies form oval or
spherical endospores
that usually distend
the end.

Increase in the gut of
patients with CDI and
IBD76 (although altered
patterns of Clostridium
group are not always the
same in CDI and IBD
patients separately)

- Restore the phylogenetic
richness of the gut
(restoration of
Firmicutes/Bacteroidetes
ratio)115

- Increase of butyrate
production (negative
correlation with the
presence of C. difficile)81

Clostridium
bifermentans,
Clostridium innocuum,
Clostridium ramosum,
Clostridium
cocleatum85

Blautia producta,
Escherichia coli,
Clostridium
bifermentans (to
antagonize C. difficile
and restore
Bacteroides levels)
(CDI)82

Enterococcus Firmicutes
Bacilli
Lactobacillales
Enterococcaceae

● Gram-stain-positive
rods, non-spore
forming.

● Some strains motile
by scanty flagella

● Cells are ovoid
● Facultative

anaerobic
● Carboxyphilic (C02

dependant)

Increase in the gut of
patients with both CDI and
IBD76 (although altered
patterns of Enterococcus
group are not always the
same in CDI and IBD
patients studied
separately)

- Reduction of lactic acid-
producing bacteria and
their metabolites

- Restitution of the
intestinal homeostasis

Enterococcus
faecalis (CDI)85

Faecalibacterium Firmicutes
Clostridia
Clostridiales
Ruminococcaceae

● Usually Gram-stain-
negative

● Rod-shaped cells
● Non-motile
● Non-sporulating
● Butyrate production
● Metabolize pectin,

uronic acids, and
N-acetyl
glucosamine

Depletion in children with
both CDI and IBD100

- Increase methionine
biosynthesis to improve
intestinal antioxidant
capacity105

- Increase the anti-
inflammatory response in
the gut49

Faecalibacterium
prausnitzii and
Bacteroides
ovatus (CDI)115

Faecalibacterium,
Blautia,
Coprococcus (CDI)84

(Continued )
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effectiveness in both CD and UC are still not
concise.122 To prevent the likelihood of incurring
CDI, a combination of various probiotics, includ-
ing Streptococcus faecalis, Bacillus mesentericus,
and Clostridium butyricum,123 has been proposed
(once again, we can find among “protective”
strains those associated with butyric acid

production). Competition for the niche with non-
toxigenic C. difficile strains has also been suggested
for CDI prevention. Bacillus clausii and
Lactobacillus reuteri also act as probiotics for this
infection because they secrete compounds that
directly inhibit C. difficile.124 Those probiotics pro-
posed for CDI and IBD separately could be used

Table 3. (Continued).

Bacteria group
at genus level Taxonomy

Main characteristics and
role in the intestinal
metabolic activity◊

Gut ecosystem
modifications observed

Fecal microbiota transplant treatment

Expected changes after
taxa restoration

Main microbiota
communities
identified in

bacteriotherapy
studies for gut
restoration (∇)

Roseburia Firmicutes
Clostridia
Clostridiales
Lachnospiraceae

● Gram-stain-negative
to variable stain
reaction

● Rod-shaped cells
● Non-sporulating
● Motile (37ºC) by

flagella
● Chemo-

organotrophic
● Strictly anaerobic
● Use of carbohydrates

as a carbon and
energy source

● Produces H2, CO2

and large amounts
of butyrate after fer-
mentation of glucose
and acetate

● May produce lactate,
formate, and ethanol

Depletion in children with
both CDI and IBD100

- Increase methionine
biosynthesis to improve
intestinal antioxidant
capacity105

- Increase of butyrate
production (negative
correlation with dysbiosis
in UC)74

Roseburia,
Oscillobacter, Blautia,
Dorea (CDI)115

Ruminococcus
gnavus

Firmicutes
Clostridia
Clostridiales
Ruminococcaceae

● Gram-stain positive
cell wall structure
(but many stain
Gram-negative)

● Cells are coccoid, in
pairs and chains

● Only few motile
(flagella)

● Chemo-
organotrophic

● Strictly anaerobic
● Growth is stimulated

by fermentable car-
bohydrates and the
end products
include acetate, for-
mate, ethanol, lac-
tate, and succinate

● Mucin degradation

Increase of Ruminococcus
gnavus in adult patients
with both CDI and IBD76

Depletion (genus level) in
children with both CDI and
IBD100

- Reduction of digestive
endogenous mucin
substrate to prevent
other bacteria
proliferation and to allow
host bacteria to
multiply67

Ruminococcus,
Blautia, Bacteroides
(in detriment of
Enterococcus,
Escherichia, Shigella)
(CDI)81

Ruminococcaceae,
Blautia (associated to
colonization
resistance) (CDI)83

◊ According to Bergey´s Manual of Systematics of Archea and Bacteria.
∇ Specific studies addressing the efficacy of different bacterial species in the restoration of the gut microbiota after inflammation and/or infection.
CDI: Clostridium difficile infection.
AM: animal model.
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jointly to treat both diseases. However, a recent
study underlines the important role of mutual
interaction of probiotics, which can inhibit other
probiotics or protective taxa in the gut.125

Therefore, further studies addressing these meta-
bolic interactions are necessary to better under-
stand the role of these probiotics in both diseases.

Conclusions and future directions

In this review, we have summarized the gut micro-
biota changes associated with both forms of IBD
and CDI and their similarity with the dysbiosis
that occurs in the CDI. IBD is itself
a complicated and poorly understood disease.
The alteration of the microbiota and the metabolic
environment of the gut have direct consequences
in chronic inflammation and in the colonization
and multiplication of opportunistic pathogens,
with C. difficile being one of the most important
causes of infection in this group. Our analysis
reveals important modifications in specific taxa
that recur in both diseases despite the intrinsic
differences of each study (variable environment,
genetic diversity, medication usage, smoking his-
tory, and variable diet). Furthermore, the investi-
gation of the metabolic pathways of these groups
of bacteria reveals the specific mechanism of
action in the epithelial cells and lumen in the
gut. Elucidating the impact of bacterial metabolites
in other microbial communities, it is possible to
better discern between protective bacteria and
those that cause harm. All the advances in new
sequencing technologies have provided a large
number of publications that apply these methods
to better understand intestinal inflammation.
However, in this review, we highlight that there
is an insufficient number of studies addressing the
microbiota composition and its changes in the gut
of patients suffering from both CDI and IBD.
Furthermore, the only available data are focused
either on the epidemiology and treatment of the
infection in IBD patients or on the microbiota
composition of adult patients, but there are no
results on other patient groups, such as the elderly,
pediatric, or pregnant IBD populations. In addi-
tion, the results regarding adults are scarce and
supported by only a few studies. Therefore, there
is an urgent need to develop new research lines

addressing the changes in the gut microbiota in
IBD patients suffering from CDI. These studies
will provide results that are now necessary to
develop new therapeutic strategies to prevent and
treat C. difficile and its infection in IBD.
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